metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(1,10-Phenanthrolin-5-yl)ethynyl]-(triphenylposphine-*κP*)gold(I)

Heng-Yun Ye,* Feng-Rong Dai and Zhong-Ning Chen

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: czngroup@fjirsm.ac.cn

Received 24 April 2007; accepted 25 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 17.9.

The title compound, $[Au(C_{14}H_7N_2)(C_{18}H_{15}P)]$, was synthesized by the reaction of $[AuCl(PPh_3)]$ and 5-ethynyl-1,10-phenanthroline. The coordination geometry of gold(I) is two-coordinate (linear) and no intermolecular Au···Au interactions are observed.

Related literature

For related literature, see: McAuliffe *et al.* (1979); Pomestchenko *et al.* (2005); Xu *et al.* (2006); Yam *et al.* (1999); Ziessel *et al.* (1996, 1998).

Experimental

Crystal data

 $\begin{bmatrix} Au(C_{14}H_7N_2)(C_{18}H_{15}P) \end{bmatrix}$ $M_r = 662.45$ Monoclinic, $P2_1/n$ a = 8.6927 (7) Å b = 18.9137 (11) Å c = 16.0457 (13) Å $\beta = 104.512$ (4)°

Data collection

Rigaku Mercury 70 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2000) $T_{min} = 0.461, T_{max} = 1.000$ (expected range = 0.143–0.311)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.094$ S = 1.105803 reflections $V = 2553.9 \text{ (3) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 5.85 \text{ mm}^{-1}$ T = 293 (2) K0.46 \times 0.35 \times 0.20 mm

18982 measured reflections 5803 independent reflections 4969 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support from the NSF of Fujian Province (grant No. E0420002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2351).

References

- McAuliffe, C. A., Parish, R. V. & Randall, P. D. (1979). J. Chem. Soc. Dalton Trans. pp. 1730–1735.
- Pomestchenko, I. E., Polyansky, D. E. & &Castellano, F. N. (2005). Inorg. Chem. 44, 3412–3421.

Rigaku (2000). CrystalClear. Version 1.3.6. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Xu, H.-B., Shi, L.-X., Ma, E., Zhang, L.-Y., Wei, Q.-H. & Chen, Z.-N. (2006). *Chem. Commun.* pp. 1601–1603.

Yam, V. W. W., Lo, K. K. W. & Wong, K. M. C. (1999). J. Organomet. Chem. 578, 3–30.

Ziessel, R., Hissler, M., El-ghayoury, A. & Harriman, A. (1998). Coord. Chem. Rev. 178–180, 1251–1298.

Ziessel, R., Suffert, J. & Youinou, M.-T. (1996). J. Org. Chem. 61, 6535-6546.

Acta Cryst. (2007). E63, m1576 [doi:10.1107/S1600536807020661]

[(1,10-Phenanthrolin-5-yl)ethynyl](triphenylposphine-*KP*)gold(I)

H.-Y. Ye, F.-R. Dai and Z.-N. Chen

Comment

Acetylide-functionalized diimines have been used widely in the design of multi-component transition metal complexes composed of discrete redox and/or photoactive sub-units. (Pomestchenko *et al.*, 2005; Ziessel *et al.*, 1998) We have focused on such bridging ligands for the design of d–f bimetallic arrays by introducing d-block chromophores and f-block lumino-phores bound to acetylide and bipyridine/phenanthroline, respectively.

As shown in Fig. 1, the coordination geometry of Gold(I) is two-coordinate (linear), the Gold(I) atom is bound to (1,10-phenothrolin-5-yl) ethynyl as well as coordinated to P atom from triphenylposphine. The bond distance [2.013 (5) Å] of gold(I)–alkynyl is comparable to those observed in other Gold (I) acetylide complexes (Yam *et al.*, 1999). The structure of (1,10-phenothrolin-5-yl) ethynyl is normal compared to the platinum compound (Xu *et al.*, 2006). Unlike some Gold (I) acetylide complexes (Yam *et al.*, 1999), no intermolecular Au—Au interaction is observed.

Experimental

[AuCl(PPh₃)] (McAuliffe *et al.*, 1979) (100 mg, 0.202 mmol)and 5-Ethynyl-1,10-phenanthroline (Ziessel *et al.*, 1996) (40.4 mg, 0.02 mmol) were stirred in a solution of CH₃ONa in MeOH (0.1 *M*, 15 ml) for 8 h. After filtration, the solid precipitate was washed with 2 ml MeOH and recrystallized by diffusion of n-hexane into its dichloromethane solution. Yellow crystals suitable for single-crystal X-ray analysis were obstained after 5 days.

Refinement

All H atoms were included in calculated positions with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

[(1,10-Phenanthrolin-5-yl)ethynyl](triphenylposphine-κP)gold(l)

Crystal data	
$[Au(C_{14}H_7N_2)(C_{18}H_{15}P)]$	$F_{000} = 1288$
$M_r = 662.45$	$D_{\rm x} = 1.723 {\rm Mg m}^{-3}$

Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.6927 (7) Å
<i>b</i> = 18.9137 (11) Å
c = 16.0457 (13) Å
$\beta = 104.512 \ (4)^{\circ}$
$V = 2553.9 (3) \text{ Å}^3$
Z = 4

Data collection

Duiu collection	
Rigaku Mercury 70 CCD diffractometer	5803 independent reflections
Radiation source: fine-focus sealed tube	4969 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)	$k = -24 \rightarrow 24$
$T_{\min} = 0.461, T_{\max} = 1.000$	$l = -20 \rightarrow 11$
18982 measured reflections	

Mo *K* α radiation $\lambda = 0.71073$ Å

 $\theta = 3.0-27.5^{\circ}$ $\mu = 5.85 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow

 $0.46 \times 0.35 \times 0.20 \text{ mm}$

Cell parameters from 5853 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 4.4814P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.001$
5803 reflections	$\Delta \rho_{max} = 1.18 \text{ e } \text{\AA}^{-3}$
325 parameters	$\Delta \rho_{\rm min} = -1.74 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Au1	0.89976 (2)	0.047965 (11)	0.329679 (12)	0.04690 (8)
P1	0.94614 (14)	0.01607 (7)	0.20171 (8)	0.0399 (3)
N1	0.5643 (6)	0.2381 (3)	0.7534 (3)	0.0597 (12)
N2	0.3701 (6)	0.1515 (2)	0.6332 (3)	0.0568 (11)
C1	0.8451 (6)	0.0855 (3)	0.4361 (3)	0.0482 (12)
C2	0.8054 (7)	0.1118 (3)	0.4934 (3)	0.0505 (12)
C3	0.2785 (7)	0.1123 (3)	0.5744 (4)	0.0597 (14)
H3A	0.1747	0.1047	0.5780	0.072*
C4	0.3268 (7)	0.0810 (3)	0.5065 (4)	0.0576 (14)
H4A	0.2562	0.0541	0.4656	0.069*
C5	0.4785 (7)	0.0907 (3)	0.5011 (3)	0.0486 (12)
H5A	0.5133	0.0699	0.4566	0.058*
C6	0.5826 (6)	0.1320 (2)	0.5627 (3)	0.0425 (11)
C7	0.5225 (6)	0.1622 (3)	0.6278 (3)	0.0446 (11)
C8	0.7466 (6)	0.1438 (3)	0.5600 (3)	0.0447 (11)
С9	0.8397 (7)	0.1859 (3)	0.6210 (3)	0.0518 (12)
H9A	0.9449	0.1933	0.6198	0.062*
C10	0.7807 (7)	0.2192 (3)	0.6868 (3)	0.0500 (12)
C11	0.6247 (7)	0.2078 (3)	0.6917 (3)	0.0484 (12)
C12	0.8761 (8)	0.2647 (3)	0.7469 (4)	0.0635 (15)
H12A	0.9801	0.2741	0.7448	0.076*
C13	0.8153 (9)	0.2951 (3)	0.8081 (4)	0.0682 (17)
H13A	0.8767	0.3254	0.8487	0.082*
C14	0.6605 (9)	0.2801 (3)	0.8090 (4)	0.0676 (17)
H14A	0.6208	0.3010	0.8518	0.081*
C15	0.8246 (5)	0.0706 (3)	0.1168 (3)	0.0438 (11)
C16	0.8142 (7)	0.1420 (3)	0.1320 (5)	0.0646 (16)
H16A	0.8686	0.1611	0.1846	0.077*
C17	0.7230 (8)	0.1852 (3)	0.0693 (6)	0.085 (2)
H17A	0.7166	0.2333	0.0798	0.102*
C18	0.6428 (9)	0.1581 (4)	-0.0075 (5)	0.089 (2)
H18A	0.5856	0.1880	-0.0502	0.106*
C19	0.6458 (8)	0.0874 (4)	-0.0221 (4)	0.0752 (19)
H19A	0.5861	0.0688	-0.0738	0.090*
C20	0.7374 (7)	0.0429 (3)	0.0393 (4)	0.0560 (14)
H20A	0.7403	-0.0054	0.0286	0.067*
C21	1.1503 (5)	0.0309 (3)	0.1981 (3)	0.0396 (10)
C22	1.2703 (6)	0.0017 (3)	0.2625 (4)	0.0552 (13)
H22A	1.2441	-0.0255	0.3052	0.066*
C23	1.4268 (6)	0.0123 (4)	0.2641 (4)	0.0643 (16)
H23A	1.5061	-0.0082	0.3072	0.077*
C24	1.4665 (7)	0.0532 (3)	0.2022 (5)	0.0638 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H24A	1.5727	0.0611	0.2037	0.077*
C25	1.3492 (7)	0.0825 (4)	0.1377 (4)	0.0600 (14)
H25A	1.3764	0.1096	0.0952	0.072*
C26	1.1918 (6)	0.0719 (3)	0.1359 (3)	0.0486 (12)
H26A	1.1130	0.0925	0.0926	0.058*
C27	0.9016 (6)	-0.0739 (3)	0.1666 (3)	0.0435 (11)
C28	0.7915 (6)	-0.1114 (3)	0.1980 (3)	0.0505 (12)
H28A	0.7497	-0.0915	0.2405	0.061*
C29	0.7427 (7)	-0.1780 (3)	0.1673 (4)	0.0626 (15)
H29A	0.6688	-0.2027	0.1890	0.075*
C30	0.8047 (9)	-0.2073 (3)	0.1041 (4)	0.0710 (18)
H30A	0.7712	-0.2517	0.0821	0.085*
C31	0.9150 (8)	-0.1712 (3)	0.0740 (4)	0.0646 (16)
H31A	0.9572	-0.1915	0.0318	0.078*
C32	0.9650 (7)	-0.1052 (3)	0.1049 (4)	0.0532 (13)
H32A	1.0417	-0.0815	0.0843	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.03953 (11)	0.06034 (14)	0.04452 (12)	-0.00352 (9)	0.01742 (8)	-0.00830 (8)
P1	0.0296 (6)	0.0527 (7)	0.0398 (6)	-0.0021 (5)	0.0129 (5)	-0.0041 (5)
N1	0.070 (3)	0.065 (3)	0.051 (3)	0.012 (2)	0.028 (2)	-0.003 (2)
N2	0.055 (3)	0.055 (3)	0.066 (3)	0.008 (2)	0.026 (2)	0.003 (2)
C1	0.039 (3)	0.057 (3)	0.055 (3)	-0.007 (2)	0.023 (2)	-0.007 (2)
C2	0.057 (3)	0.049 (3)	0.049 (3)	0.003 (2)	0.019 (2)	-0.001 (2)
C3	0.045 (3)	0.056 (3)	0.081 (4)	0.005 (2)	0.022 (3)	0.009 (3)
C4	0.056 (3)	0.054 (3)	0.061 (3)	0.000 (3)	0.009 (3)	0.003 (3)
C5	0.058 (3)	0.043 (3)	0.046 (3)	0.008 (2)	0.015 (2)	0.006 (2)
C6	0.052 (3)	0.037 (2)	0.040 (2)	0.008 (2)	0.014 (2)	0.0074 (18)
C7	0.050 (3)	0.042 (3)	0.046 (3)	0.009 (2)	0.019 (2)	0.006 (2)
C8	0.055 (3)	0.042 (2)	0.042 (3)	0.007 (2)	0.020 (2)	0.0054 (19)
C9	0.051 (3)	0.056 (3)	0.050 (3)	0.001 (2)	0.016 (2)	-0.001 (2)
C10	0.063 (3)	0.044 (3)	0.043 (3)	0.004 (2)	0.012 (2)	0.001 (2)
C11	0.061 (3)	0.042 (3)	0.043 (3)	0.013 (2)	0.016 (2)	0.004 (2)
C12	0.067 (4)	0.062 (3)	0.057 (3)	0.001 (3)	0.007 (3)	-0.007 (3)
C13	0.084 (5)	0.063 (4)	0.051 (3)	0.004 (3)	0.004 (3)	-0.013 (3)
C14	0.094 (5)	0.063 (4)	0.047 (3)	0.020 (3)	0.020 (3)	-0.004 (3)
C15	0.028 (2)	0.054 (3)	0.053 (3)	-0.0031 (19)	0.015 (2)	-0.001 (2)
C16	0.045 (3)	0.057 (3)	0.086 (4)	-0.006 (3)	0.005 (3)	-0.004 (3)
C17	0.066 (4)	0.048 (3)	0.135 (7)	-0.002 (3)	0.014 (4)	0.010 (4)
C18	0.079 (5)	0.077 (5)	0.097 (6)	-0.002 (4)	-0.002 (4)	0.037 (4)
C19	0.068 (4)	0.090 (5)	0.059 (4)	0.015 (4)	-0.001 (3)	0.010 (3)
C20	0.053 (3)	0.062 (3)	0.049 (3)	0.006 (3)	0.006 (2)	-0.002 (2)
C21	0.032 (2)	0.050 (3)	0.039 (2)	-0.0022 (19)	0.0126 (18)	-0.0030 (19)
C22	0.038 (3)	0.071 (4)	0.058 (3)	0.006 (2)	0.015 (2)	0.011 (3)
C23	0.035 (3)	0.075 (4)	0.080 (4)	0.010 (3)	0.008 (3)	0.003 (3)
C24	0.031 (3)	0.082 (4)	0.082 (4)	-0.003 (3)	0.020 (3)	-0.013 (3)

C25	0.048 (3)	0.079 (4)	0.062 (4)	-0.011 (3)	0.029 (3)	-0.003 (3)
C26	0.037 (2)	0.070 (3)	0.042 (3)	0.002 (2)	0.014 (2)	0.001 (2)
C27	0.038 (2)	0.053 (3)	0.039 (2)	-0.001 (2)	0.008 (2)	0.002 (2)
C28	0.041 (3)	0.063 (3)	0.050 (3)	-0.005 (2)	0.017 (2)	0.000 (2)
C29	0.050 (3)	0.064 (4)	0.073 (4)	-0.010 (3)	0.014 (3)	0.004 (3)
C30	0.081 (5)	0.053 (3)	0.070 (4)	-0.004 (3)	0.002 (4)	-0.005 (3)
C31	0.084 (5)	0.058 (3)	0.054 (3)	0.008 (3)	0.021 (3)	-0.006 (3)
C32	0.056 (3)	0.054 (3)	0.055 (3)	0.004 (2)	0.025 (3)	0.003 (2)
Geometric p	oarameters (Å, °)					
Au1—C1		2.013 (5)	C16	—C17		1.382 (9)
Au1—P1		2.2710 (13)	C16	—Н16А		0.9300
P1—C27		1.804 (5)	C17			1.355 (11)
P1-C21		1.812 (5)	C17	—H17А		0.9300
P1—C15		1.821 (5)	C18	—С19		1.360 (10)
N1-C14		1.324 (8)	C18	—H18A		0.9300
N1-C11		1.359 (7)	C19	—C20		1.386 (8)
N2—C3		1.302 (8)	C19	—Н19А		0.9300
N2C7		1.364 (7)	C20	—Н20А		0.9300
C1—C2		1.170 (7)	C21	C26		1.382 (7)
C2—C8		1.430 (7)	C21	—C22		1.386 (7)
C3—C4		1.394 (9)	C22	—C23		1.369 (8)
С3—НЗА		0.9300	C22	—Н22А		0.9300
C4—C5		1.355 (8)	C23			1.370 (9)
C4—H4A		0.9300	C23	—Н23А		0.9300
C5—C6		1.400 (7)	C24	C25		1.373 (9)
C5—H5A		0.9300	C24	—H24A		0.9300
С6—С7		1.401 (7)	C25	—C26		1.376 (7)
C6—C8		1.454 (7)	C25	—Н25А		0.9300
C7—C11		1.458 (8)	C26	—Н26А		0.9300
С8—С9		1.360 (7)	C27	с—С32		1.380 (7)
C9—C10		1.431 (7)	C27			1.384 (7)
С9—Н9А		0.9300	C28	—C29		1.379 (8)
C10-C11		1.395 (8)	C28	—H28A		0.9300
C10-C12		1.399 (8)	C29	—С30		1.379 (9)
C12—C13		1.354 (9)	C29	—Н29А		0.9300
C12—H12A		0.9300	C30	—C31		1.361 (9)
C13—C14		1.379 (10)	C30	—Н30А		0.9300
С13—Н13А		0.9300	C31	—C32		1.373 (8)
C14—H14A		0.9300	C31	—H31A		0.9300
C15—C16		1.380 (8)	C32	—Н32А		0.9300
C15—C20		1.386 (7)				
C1—Au1—P	21	173.59 (16)	C15	—С16—Н16А		120.0
C27—P1—C	221	105.7 (2)	C17	—С16—Н16А		120.0
C27—P1—C	215	105.1 (2)	C18	—C17—C16		120.6 (6)
C21—P1—C	215	106.1 (2)	C18	—С17—Н17А		119.7
C27—P1—A	.u1	117.42 (17)	C16	—С17—Н17А		119.7
C21—P1—A	ul	112.66 (16)	C17			120.1 (6)

C15—P1—Au1	108.97 (17)	C17—C18—H18A	119.9
C14—N1—C11	116.8 (6)	C19—C18—H18A	119.9
C3—N2—C7	117.8 (5)	C18—C19—C20	120.5 (7)
C2—C1—Au1	174.1 (5)	С18—С19—Н19А	119.8
C1—C2—C8	176.3 (6)	С20—С19—Н19А	119.8
N2	123.9 (6)	C15—C20—C19	119.7 (6)
N2—C3—H3A	118.0	C15—C20—H20A	120.2
С4—С3—НЗА	118.0	C19—C20—H20A	120.2
C5—C4—C3	118.8 (6)	C26—C21—C22	118.6 (5)
С5—С4—Н4А	120.6	C26—C21—P1	123.1 (4)
C3—C4—H4A	120.6	C22—C21—P1	118.3 (4)
C4—C5—C6	119.8 (5)	C23—C22—C21	121.0 (5)
С4—С5—Н5А	120.1	C23—C22—H22A	119.5
С6—С5—Н5А	120.1	C21—C22—H22A	119.5
C5—C6—C7	117.3 (5)	C22—C23—C24	119.9 (5)
C5—C6—C8	122.0 (5)	С22—С23—Н23А	120.0
C7—C6—C8	120.8 (5)	C24—C23—H23A	120.0
N2—C7—C6	122.4 (5)	C23—C24—C25	120.0 (5)
N2—C7—C11	118.3 (5)	C23—C24—H24A	120.0
C6—C7—C11	119.3 (5)	C25—C24—H24A	120.0
C9—C8—C2	121.7 (5)	C24—C25—C26	120.3 (6)
C9—C8—C6	118.7 (5)	С24—С25—Н25А	119.9
C2—C8—C6	119.6 (5)	С26—С25—Н25А	119.9
C8—C9—C10	122.0 (5)	C25—C26—C21	120.3 (5)
С8—С9—Н9А	119.0	C25—C26—H26A	119.8
С10—С9—Н9А	119.0	C21—C26—H26A	119.8
C11—C10—C12	118.3 (5)	C32—C27—C28	118.5 (5)
C11—C10—C9	120.4 (5)	C32—C27—P1	122.4 (4)
C12—C10—C9	121.3 (6)	C28—C27—P1	119.0 (4)
N1—C11—C10	122.3 (5)	C29—C28—C27	121.2 (6)
N1—C11—C7	118.9 (5)	C29—C28—H28A	119.4
C10—C11—C7	118.8 (5)	C27—C28—H28A	119.4
C13—C12—C10	119.2 (7)	C30—C29—C28	119.2 (6)
C13—C12—H12A	120.4	С30—С29—Н29А	120.4
C10-C12-H12A	120.4	С28—С29—Н29А	120.4
C12—C13—C14	118.7 (6)	C31—C30—C29	120.0 (6)
C12—C13—H13A	120.6	С31—С30—Н30А	120.0
C14—C13—H13A	120.6	С29—С30—Н30А	120.0
N1—C14—C13	124.7 (6)	C30—C31—C32	121.0 (6)
N1—C14—H14A	117.7	С30—С31—Н31А	119.5
C13—C14—H14A	117.7	С32—С31—Н31А	119.5
C16—C15—C20	118.9 (5)	C31—C32—C27	120.1 (6)
C16—C15—P1	118.2 (4)	C31—C32—H32A	119.9
C20—C15—P1	122.8 (4)	C27—C32—H32A	119.9
C15—C16—C17	120.1 (6)		

Fig. 1